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Abstract 
 

 Research and development (R&D) depreciation rates are critical to calculating the rates 

of return to R&D investments and capital service costs, both of which are important for 

capitalizing R&D investments in the national income and product accounts. Although important, 

measuring R&D depreciation rates is extremely difficult because both the price and output of 

R&D capital are generally unobservable. To resolve these difficulties, economists have adopted 

various approaches to estimate industry-specific R&D depreciation rates, but the differences in 

their results cannot easily be reconciled. In addition, many of their calculations rely on 

unverifiable assumptions.  

 

Unlike tangible capital which depreciates due to physical decay or wear and tear, 

business R&D capital depreciates because its contribution to a firm’s profit declines over time. 

Based on this understanding, I developed a forward-looking profit model with a gestation lag to 

derive both constant and time-varying industry-specific R&D depreciation rates for ten R&D 

intensive industries that are identified in BEA’s R&D Satellite Account. I used two data sources, 

a Compustat SIC-based database and a BEA-NSF NAICS-based database, to perform model 

calculations. The data cover the period from 1989 to 2008. The results align with the major 

conclusions from recent studies that R&D depreciation rates are higher than the traditionally 

assumed 15 percent and vary across industries. Moreover, the industry-specific time-varying 

R&D depreciation rates provide information about the dynamics of technological evolution and 

competition across industries.   
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1. Introduction  

 
In an increasingly knowledge-based U.S. economy, measuring intangible  

assets, including research and development (R&D) assets, is critical to capturing this 

development and explaining its sources of growth. Corrado et al. (2006) pointed out that 

after 1995, intangible assets reached parity with tangible assets as a source of growth. 

Despite the increasing impact of intangible assets on economic growth, it is difficult to 

capitalize intangible assets in the national income and product accounts (NIPAs) and 

capture their impacts on economic growth. The difficulties arise because the 

capitalization involves several critical but difficult measurement issues. One of them is 

the measurement of the depreciation rate of intangible assets, including R&D assets.  

The depreciation rate of R&D assets is critical to capitalizing R&D investments in 

the NIPAs for two reasons. First, the depreciation rate is required to construct knowledge 

stocks and is also the only asset-specific element in the commonly adopted user cost 

formula. This user cost formula is used to calculate the flow of capital services 

(Jorgenson (1963), Hall and Jorgenson (1967), Corrado et al. (2006), Aizcorbe et al. 

(2009)), which is important for examining how R&D capital affects the productivity 

growth of the U.S. economy (Okubo et al (2006)). Second, the depreciation rate is 

required in the current commonly adopted approaches of measuring the rate of return to 

R&D (Hall 2007).  

As Griliches (1996) concludes, the measurement of R&D depreciation is the 

central unresolved problem in the measurement of the rate of return to R&D.  The 

problem arises from the fact that both the price and output of R&D capital are 

unobservable.  Additionally, there is no arms-length market for most R&D assets and    
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the majority of R&D capital is developed for own use by the firms. It is, hence, hard to 

independently calculate the depreciation rate of R&D capital (Corrado et al. 2006). 

Moreover, unlike tangible capital which depreciates due to physical decay or wear and 

tear, R&D, or intangible, capital depreciates because its contribution to a firm’s profit 

declines over time. And, the main driving forces are obsolescence and competition (Hall 

2007), both of which reflect individual industry technological and competitive 

environments.  Given that these environments can vary immensely across industries and 

over time, the resulting R&D depreciation rates should also vary across industries and 

over time.  

In response to these measurement difficulties, previous research adopted four 

major approaches to calculate R&D depreciation rates: patent renewal, production 

function, amortization, and market valuation approaches (Mead 2007). As summarized 

by Mead (2007), all approaches encounter the problem of insufficient data on variation 

and thus cannot separately identify R&D depreciation rates without imposing strong 

identifying assumptions. In addition, the patent renewal approach cannot capture all 

innovation activities and suffers from the identification problem of an unknown skewed 

distribution of patent values. Lastly, the production function approach relies on the 

questionable assumption of initial R&D stock and depreciation rate (Hall, 2007). 

Currently, there is no consensus on which approach can provide the best solution.  

Furthermore, because of the complexity involved in incorporating the gestation  

lag into the model, most research fails to deal with the issue of the gestation lag by 

treating it as zero or one year to calculate the R&D capital stock (Corrado et al. 2006). 
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Because product life cycle varies across industries, this treatment is questionable for 

R&D assets.   

 The Bureau of Economic analysis (BEA) plans to start treating R&D as 

investment in its Input-Output accounts and other core accounts in 2013. As a prelude to 

this change in the treatment of R&D expenditures, BEA developed an R&D satellite 

account (R&DSA) to help economists gain a better understanding of R&D activity and its 

effect on economic growth. A satellite account format provides a means of exploring the 

impact of adjusting the treatment of R&D activity on the economy and a framework 

through which various methodological and conceptual issues can be examined. Through 

the R&DSA format, BEA developed and analyzed various methodologies to measure 

R&D depreciation rates. In the 2006 R&DSA, BEA used an aggregate depreciation rate 

for all R&D capital. In the baseline scenario, BEA used 15 percent as the annual 

depreciation rate for all R&D capital. In the alternative scenarios, BEA used the 

depreciation rate of nonresidential equipment and software for all R&D capital before 

1987 and the depreciation rate of information processing equipment after that date. In the 

2007 R&DSA, BEA adopted a two-step process to derive industry-specific R&D 

depreciation rates. In the first step, BEA chose the midpoints of the range of estimates 

given by existing studies calculated for each industry (Mead 2007). In the second step, 

those midpoints were scaled down so that the recommended rates were more closely 

centered on a value of 15 percent and that the overall ranking of industry-level rates 

suggested by the literature was preserved. The resulting R&D depreciation rates are: 18 

percent for transportation equipment, 16.5 percent for computer and electronics, 11 

percent for chemicals, and 15 percent for all other industries. However, this approach 
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assumes that each set of estimates from the existing research is equally valid and future 

depreciation patterns will be identical to those in the study period. Moreover, the most 

recent studies conclude that depreciation rates for business R&D are likely to be more 

variable due to different competition environments across industries and higher than the 

traditional 15 percent assumption (Hall 2007). 

This paper introduces a new approach by developing a forward-looking profit 

model that can be used to calculate both constant and time-varying industry-specific 

R&D depreciation rates. The model is built on the core concept that, unlike tangible 

assets which depreciate due to physical decay or wear and tear, R&D capital depreciates 

because its contribution to a firm’s profit declines over time.  Without employing any 

unverifiable assumptions adopted by other methods, this forward-looking profit model 

contains very few parameters and allows us to utilize data on sales, industry output, and 

R&D investments.  

To test the new model, I first use the model to derive industry-specific R&D 

depreciation rates for pharmaceutical, IT hardware, semiconductor, and software 

industries. The calculation used Compustat data over the period from 1989 to 2008. The 

constant industry-specific R&D depreciation rates are: 11.82 ± 0.73 percent for the 

pharmaceutical industry, 37.64 ± 1.00 percent for the IT hardware industry, 17.95 ± 1.78 

percent for the semiconductor industry, and 30.17 ± 1.89 percent for the software 

industry. The calculation results show that, first, the derived R&D depreciation rates fall 

within the range of estimates from existing literature. Second, they align with the major 

conclusions from recent studies that the rates should be higher than the traditional 

assumption, 15 percent, and vary across industries. Third, each industry’s time-varying 
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R&D depreciation rates exhibit its depreciation pattern, which is normally consistent with 

the industry’s observations on the pace of technological progress or reflects the 

appropriability condition of its intellectual property.  

The above test demonstrates the capability of the new model in estimating R&D 

depreciation rates from industry data. The model is then applied to two independent 

datasets to calculate the R&D depreciation rates for all ten R&D intensive industries 

identified in BEA’s R&DSA.  The first dataset contains Compustat SIC-based firm-level 

sales and R&D investments in nine R&D intensive industries. The second dataset 

contains BEA-NSF NAICS-based establishment-level industry output and R&D 

investments in ten R&D intensive industries. 

This paper is organized as follows. Section 2 sets out the R&D investment model, 

followed by the description of data analysis. Section 3 presents an industry-level data 

analysis. Section 4 presents the set of recommended R&D depreciation rates for BEA’s 

ten R&D intensive industries, and concluding remarks are given in Section 5.  

 

2. Forward-looking Profit Model  

 The premise of my model is that business R&D capital depreciates because its 

contribution to a firm’s profit declines over time. R&D capital generates privately 

appropriable returns; thus, it depreciates when its appropriable return declines over time. 

R&D depreciation rate is a necessary and important component of a firm’s R&D 

investment model. A firm pursuing profit maximization will invest in R&D optimally 

such that the marginal benefit equals the marginal cost.  That is, in each period i, a firm 
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will choose an R&D investment amount to maximize the net present value of the returns 

to R&D investment:    
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where RDi is the R&D investment amount in period i,   i is the sales in period i, I(RDi) is 

the increase in profit rate due to R&D investment RDi, δ is the R&D depreciation rate, 

and d is the gestation lag and is assumed to be an integer which is equal to or greater than 

0.  Period i’s R&D investment RDi will contribute to the profits in later periods, i.e., i+d, 

i+d+1, …, i+d+(J-1), but at a geometrically declining rate.    is the length that should be 

large enough to cover at least the length of  the service lives of R&D assets.  r is the cost 

of capital.  

It should be pointed out that J is not the length of the service lives of R&D assets. 

  can be ∞ in theory, but in practice any sufficiently large value can be used in 

calculations. We have confirmed that, with   greater than the service lives of R&D assets, 

the derived depreciation rates are very stable when we vary the number of   in small 

increments. In the analysis presented later, we have found that, with the same values of   

and  , δ is different across industries.  

It is necessary to note here that, when a firm decides the amount of R&D 

investment for period i, the sales q for periods later than i are not available but can be 

forecasted.  In this study the past sales records are used to forecast the future sales to be 

included in the estimation of the depreciation rate.  The time series of sales data is first 

taken logs and differenced in order to satisfy the stationary condition, and the converted 

time series is modeled by the autoregressive (AR) process.  For the various types of 
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industrial data included in this study, the optimal order of the AR model as identified by 

the Akaike Information Criterion [Mills, 1990] is found to range from 0 to 2.  To 

maintain the consistency throughout the study, AR(1) is used to forecast future sales.  

The forecast error of the AR model will also affect the estimation of the 

depreciation rate.  To examine this effect, I performed a Monte Carlo calculation with 

1000 replications.  In each replication, the forecast error of AR(1) at k steps ahead,  

   
       

 
   , was calculated with            where  was obtained by AR estimation.  

This error is then added to the forecast values based on the AR(1) model.  For every 

industry included in this study, the 1000 estimates of the depreciation rate exhibit a 

Gaussian distribution. 

In the following, the predicted sales in period i is denoted as iq̂ . In addition, the 

choice of J can be a large number as long as it well covers the duration of R&D assets’ 

contribution to a firm’s profit.  In this study, I use 20 for J except for the pharmaceutical 

industry where J = 25 is used due to the longer product life cycle. 

To derive the optimal solution, I define        as a concave function: 
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  RD     when     . The functional form of       has very few parameters but 

still gives us the required concave property to derive the optimality condition, an 

approach adopted by Cohen and Klepper (1996).  
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   is the upper bound of increase in profit rate due to R&D investments. And,   

defines the investment scale for increases in RD. That is,  can indicate how fast the 

R&D investment helps a firm achieve a higher profit rate. Note that based on equation (2)  

                          

                    

                   

                   
                

                               

 

 

 

Figure 1: The Concavity of       
 

          

From the above graph, we can see that, for example, when RD, the current-period R&D 

investment amount, equals to , the increase in profit rate due to this investment will 

reach 0.64IΩ. When RD equals to 2, the increase in profit rate due to this investment will 

reach 0.87IΩ. The value of  can vary from industry to industry; that is, we expect to see 

different industries have different R&D investment scales.  

It will be shown in the next Section that the average R&D investment in some 

industries can increase by multiple folds over a period of two decades, and therefore we 
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expect that the investment scale to achieve the same increase in profit rate should grow 

accordingly. For this reason I model the time-dependent feature of   by 

                                 , in which       is the value of  in year 

2000.  The coefficient  is estimated by linear regression of                for each 

industry.  Note that c is a constant.   

The R&D investment model becomes: 
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 The optimal condition is met when 0 ii RD , that is, 
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  (5), 

and through this equation we can estimate the depreciation rate . 

  

3. Industry-Level Analysis – Initial Test  

As a first step in our empirical analysis, I estimate the constant R&D depreciation 

rate δ for four industries (pharmaceuticals, semiconductor, IT hardware, and software) by 

using the data from 1989 to 2008 to check whether my model gives us R&D depreciation 

rates in line with rates in past studies.  These industries are important for the initial test of 

my model because the combined R&D investments of these four industries account for 
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54.56% of U.S. total business R&D investments in 2004.  I take the average values of 

annual sales and R&D investment in each industry from Compustat for estimation.
1
 

The Compustat dataset contains firm-level sales and R&D investments for SIC-

based industries: pharmaceutical, IT hardware, semiconductor, and software. Their 

corresponding SIC codes listed below:  

Table 1: Industry and Its Correspondent SIC Codes  

Industry SIC codes 

Pharmaceuticals 2830, 2831, 2833-2836 

IT Hardware  3570-3579, 3680-3689, 3695 

Semiconductor 3622, 3661-3666, 3669-3679, 3810, 3812 

Software 7372 

 

The data covers the period from 1989 to 2008. Figure 1 displays the time-series plots of 

four industries for each dataset. 

  

                                                 
1
 I conduct this calculation from the data of 463 firms in the semiconductor industry, 153 firms in the IT 

hardware industry, 651 firms in the software industry, and 551 firms in the pharmaceutical industry. 
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Figure 2: Compustat Firm-level Dataset; Mean Value and Company Based;  

Period: 1989-2008 

 
 

 

 
 

 

The value of  IΩ can be inferred from the BEA annual return rates of all assets for 

non-financial corporations.  As Jorgenson and Griliches (1967) argue, in equilibrium the 

rates of return for all assets should be equal to ensure no arbitrage, and so we can use a 

common rate of return for both tangibles and intangibles (such as R&D assets).  For 

simplicity, I use the average return rates of all assets for non-financial corporations 

during 1987-2008, 8.9 percent, for IΩ.  In addition, in equilibrium the rate of returns 

should be equal to the cost of capital. Therefore, I use the same value for r.  

 I use Equation (5) as the model to estimate the R&D depreciation rate from the 
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parameters in the equation are  and .  Because Equation (5) holds when the true values 

of  and  are given, the difference between the left hand side and the right hand side of 

Equation (5) is expected to be zero or close to zero when we conduct a least square fitting 

to derive the optimal solution.  Therefore, we can estimate these unknowns by 

minimizing the following quantity: 
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 (6), 

in which N is the length of data in years.   

Minimizing Equation (6) is therefore least squares fitting between the model and 

the data.  As the functional form is nonlinear, the calculation needs to be carried out 

numerically, and in this study the downward simplex method is applied.  In each 

numerical search of the optimal solution of  and , several sets of start values are tried to 

ensure the stability of the solution.  

In this study I use a 2-year gestation lag, which is consistent with the finding in 

Pakes and Schankerman (1984) who examined 49 manufacturing firms across industries 

and reported that gestation lags between 1.2 and 2.5 years were appropriate values to use.  

As mentioned previously, the value of   is set to be 25 for pharmaceuticals and 20 for 

other industries.  The estimated value of constant δ is 11.82 ± 0.73 percent for the 

pharmaceutical industry, 37.64 ± 1.00 percent for the IT hardware industry, 17.95 ± 1.78 

percent for the semiconductor industry, and 30.17 ± 1.89 percent for the software 

industry. These results indicate that the ranking of R&D depreciation rates across 
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industries in a descending order is: IT hardware, software, semiconductor, and 

pharmaceutical industries. 

 Since the technological and competition environments change over time, the 

R&D depreciation rates are expected to vary through the 20 years of data studied.  

Therefore, there is a need to calculate industry-specific and time-dependent R&D 

depreciation rates.  I use the same industry average sales and R&D investment data from 

Compustat. The time-dependent feature of  was obtained by minimizing Equation (6) 

with subsets of data.  Instead of using all years of data, I performed least squares fitting 

over a five-year interval each time, in addition to the five prior years used for sales 

forecasts.  Four more subsets of data are examined in the same way, each with a step of 2 

years in progression.  As a result there are five subsets of data where data-model fit is 

carried out, and the estimated depreciation rates are the mid-years of time windows, 

which are years of 1997, 1999, 2001, 2003, and 2005. The values of d, J, IΩ, and r are 

defined in the same manner as before.  

The best-fit time-varying R&D depreciation rates for the studied four industries 

show that the ranking order of the depreciation rates is in general maintained over time 

(See Figure 3). The vertical error bar is the standard deviation of the estimated R&D 

depreciation rate estimated through the Monte-Carlo calculation in the same fashion.  
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Figure 3: Depreciation Rates for Four R&D Intensive Industries (Compustat) 

 

The results of the time-varying R&D depreciate rates indicate that (1) the 

pharmaceutical industry has the lowest R&D depreciation rate, which may reflect the fact 

that R&D resources in pharmaceuticals are more appropriable than in other industries due 

to effective patent protection and other entry barriers; (2) the IT hardware industry has 

the highest R&D depreciation rate, which is consistent with the industry’s observations 

that,  compared with other industries, the IT hardware industry has adopted a higher 

degree of global outsourcing to source from few global suppliers. In addition, the module 

design and efficient global supply chain management has made the industry products 

introduced like commodities, which have shorter product life cycle; (3) the R&D 
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This is consistent with the industry’s consensus that the rate of technological progress in 

the microprocessor industry has slowed down after 2000
2
.  

Table 2 compares the constant R&D depreciation rates estimated by this study 

with those obtained from other recent studies.  The comparison highlights several key 

results from this study.  First, the derived industry-specific R&D depreciation rates fall 

within the range of recent research estimates based on commonly-adopted production 

function and market valuation approaches (Berstein and Mamuneas, 2006; Hall, 2007; 

Huang and Diewert, 2007; Warusawitharana, 2008).  Second, my results are consistent 

with those of recent studies, which indicate that depreciation rates for business R&D are 

likely to vary across industries due to the different competition environments that each 

industry faces. Third, most industries have R&D depreciation rates higher than the 

traditional 15% assumption derived using the data of the 1970s (Berstein and Mamuneas, 

2006; Corrado et al., 2006; Hall, 2007; Huang and Diewert, 2007; Warusawitharana, 

2008; Grilliches and Mairesse, 1984).   

Given that the results based on Compustat dataset align with the conclusions with 

existing studies and industry observations on the pace of technological progress and the 

degree of market competition, the next step is to perform the same calculations for all ten 

R&D intensive industries identified in BEA’s R&D Satellite Account.  

 

4. Industry-Level Analysis – All Ten BEA R&D Intensive Industries  

There are three steps to derive a complete set of the recommended depreciation 

rates of business R&D assets. In the first step, I estimate two sets of the industry-specific 

                                                 
2
 Professor Pillai, who used to work for AMD and is now at SUNY University at Albany, confirmed this 

trend.  
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R&D depreciation rates based on the Compustat company-based data and the BEA-NSF 

establishment-based data (See Table 3). The values based on the two datasets are 

plausible for most industries.  Among the R&D depreciation rates in the ten analyzed 

R&D intensive industries, the values for the aerospace and auto industries are usually 

large compared to those for other industries. For example, based on both Compustat and 

BEA-NSF datasets, the estimated R&D depreciation rates for the auto industry are 39.88% 

and 61.57%, respectively, and these results are not inconsistent to the result of the UK’s 

ONS (office of National Statistics) survey on the R&D service life (Haltiwanger et al., 

2010). The average R&D service life for the auto industry in the UK’s ONS survey is 4.3 

years, which implies an R&D depreciation rate over 40 percent. Note that the response 

rate of the UK’s ONS survey, however, is merely 10-200 firms out of 989 firms, or 

equivalently 1.0-20.2 percent of the surveyed firms.  

In the second step, because the profit rates of these two industries are significantly 

lower than those of other industries, I relax the criterion based on the argument by 

Jorgenson and Griliches’ with regard to using the common rate of return for both tangible 

and intangible assets and reduce the upper bound of the return rate by 50% in the model. 

The justifications are given by the two facts: First, the U.S. auto industry had negative 

return rates during the data period
3
. Second, in its August 2011 report on the Aerospace 

and Defense industrial base assessments, the Office of Technology Evaluation at 

Department of Commerce reports that the industry’s profit margin is around 1% and may 

be only 10% of the performance of high-tech industries in Silicon Valley. After the 

relaxation, for the auto industry, the estimated result based on the BEA-NSF dataset is 

                                                 
3
 Brian Sliker at BEA, an expert in the return rate of industry assets, indicated this negative trend in the 

auto industry.  
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close to the estimated range by Bernstein and Mamuneas (2006) and by Huang and 

Diewert (2007). For the aerospace industry, this study may be the first to have estimated 

its depreciation rate, and the result is consistent with the general belief that the 

depreciation rate decreases when the development cycle is longer or the degree of 

competition is lower.  Compared with the pharmaceutical industry, the aerospace industry 

has a shorter development cycle which results in a higher R&D depreciation rate. On the 

other hand, in comparison with the auto industry, the aerospace industry has a longer 

development cycle and a lower degree of competition, resulting in a lower R&D 

depreciation rate.  

In the third step, the number of J is chosen based on the robustness check of the 

stability of optimal solutions. When J is 20, the optimal solutions are stable for all 

industries except the pharmaceutical industry, where J needs to be 40. So, the optimal 

solution for the pharmaceutical industry is updated with J equals to 40.  

 Table 4 is the summary of the recommended depreciation rates of R&D assets 

based on the BEA-NSF dataset. The results in this table are based on two scenarios of the 

average gestation lag of R&D projects. In addition, I assume that the R&D assets 

depreciate at this rate geometrically. Lastly, it is considered that when a firm invests in 

R&D, whether the investment is successful or not, the R&D investment should contribute 

to the firm’s knowledge stock. Therefore, we recommend the use of the calculated rates 

with a zero gestation lag.  
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Table 2: Summary of Studies on R&D Depreciation Rates  

Study  δ: R&D Depreciation Rate Approach  Data 

Lev and Sougiannis 

(1996)  

Scientific instruments: 0.20  

Electrical equipment: 0.13 

Chemical: 0.11 

Amortization  825 U.S. firms over the 

period of 1975-1991;  

Compustat dataset  

Ballester, GarciaAyuso, 

and Livnat  (2003)  

Scientific instruments: 0.14 

Electrical equipment: 0.13 

Chemicals: 0.14 

Amortization  652 U.S. firms over the 

period of 1985-2001 for 

preferred specification; 

Compustat dataset 

Knott, Bryce and Posen 

(2003) 

Pharmaceuticals: 0.88-1.00 Production 

function 

40 U.S. firms over the 

period of 1979 -1998;  

Compustat dataset 

Berstein and Mamuneas 

(2006) 

Electrical equipment: 0.29 

Chemicals: 0.18 

Production 

function  

U.S. manufacturing 

industries over the 

period of 1954-2000 

Hall (2007)  Computers and scientific 

instruments: 0.05  

Electrical equipment: 0.03  

Chemicals: 0.02  

Production  

Function  

16750 U.S. firms over 

the period of 1974-2003; 

Compustat dataset  

Hall (2007)  Computers and scientific 

instruments: 0.42  

Electrical equipment: 0.52 

Chemicals: 0.22 

Market 

valuation  

16750 U.S. firms over 

the period of 1974-2003; 

Compustat dataset 

Huang and Diewert 

(2007) 

Electrical equipment: 0.14 

Chemicals: 0.01  

Production 

function  

U.S. manufacturing 

industries over the 

period of 1953-2001 

Warusawitharana 

(2008)  

Chips: 0.344 

Hardware: 0.277 

Medical Equipment: 0.369 

Pharmaceutical: 0.409 

Software: 0.366 

Market 

valuation  

U.S. manufacturing 

industries over the 

period of 1987- 2006;  

Compustat dataset 

This study Semiconductor: 0.1795 ± 0.0178 

IT hardware: 0.3764 ± 0.01 

Software: 0.3017 ± 0.0189 

Pharmaceutical: 0.1182 ± 

0.0073 

R&D 

investment  

model  

U.S. manufacturing 

industries over the 

period of 1989-2007;  

Compustat dataset 
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Table 3: Summary of R&D Depreciation Rates  

Based on A Steady-State Model 

Industry Compustat  Data BEA-NSF Data 

Computers and peripheral equipment 0.3764 ± 0.01 0.4073 ± 0.0136 

Software 0.3017 ± 0.01 0.2420 ± 0.0030 

Pharmaceutical  0.1182 ± 0.0073 0.0812 ± 0.0040 

Semiconductor 0.1795 ± 0.0178 0.2708 ± 0.0175 

Aerospace product and parts  0.6131 ± 0.0200 0.4539 ± 0.0314 

Communication equipment 0.2783 ± 0.0457 0.3089 ± 0.0223 

Computer system design  0.2860 ± 0.0290 0.4272 ± 0.0056 

Motor vehicles, bodies and trailers, and parts  0.3988 ± 0.0105 0.6157 ± 0.0227 

Navigational, measuring, electromedical, and 

control instruments 

0.3408 ± 0.0216 0.2602 ± 0.0067 

Scientific research and development NA 0.1627 ±0.0038 
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Table 4: Summary of Depreciation Rates of Business R&D Assets 

Based on BEA-NSF Dataset 

Industry δ (d=2) δ (d=0) 

Computers and peripheral equipment 41% 40% 

Software 24% 22% 

Pharmaceutical  10% 10% 

Semiconductor 27% 25% 

Aerospace  21% 22% 

Communication equipment 31% 27% 

Computer system design  43% 36% 

Motor vehicles, bodies and trailers, and parts  28% 31% 

Navigational, measuring, electromedical, and control 

instruments 

26% 29% 

Scientific research and development 16% 16% 

 

Note:  

1. d refers to the gestation lag of a typical R&D investment and δ refers to the depreciation 

rate of the R&D investment.  
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5. Conclusion  

R&D depreciation rates are critical to calculating rates of return to R&D 

investments and capital service costs, which are important for capitalizing R&D 

investments in the national income accounts. Although important, measuring R&D 

depreciation rates is extremely difficult because both the price and output of R&D capital 

are generally unobservable. BEA adopted two simplified methods based on existing 

studies to temporarily resolve the problem of measuring R&D depreciation rates in its 

2006 Research & Development Satellite Account (R&DSA) and 2007 R&DSA. BEA 

chose the rates following two rules: First, the rates were close to traditional 15 percent 

assumption. Second, the overall ranking of the rates suggested by the literature was 

preserved.  However, the most recent studies conclude that depreciation rates for business 

R&D are likely to be more variable due to different competition environments across 

industries and higher than the traditional 15 percent assumption.  

 In this research,  I develop a forward-looking profit model to derive industry-

specific R&D depreciation rates. Without any unverifiable assumptions adopted by other 

methods, this model contains very few parameters and allows us to utilize Compustat 

data on sales and R&D investments, and BEA-NSF data on industry output and R&D 

investments. The new methodology allows us to calculate not only industry-specific 

constant R&D depreciation rates but also time-varying rates. 

My research results highlight several promising features of the new forward-

looking profit model: First, the derived constant industry-specific R&D depreciation rates 

fall within the range of estimates from previous studies.  The time-varying results also 
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capture the heterogeneous nature of industry environments in technology and competition. 

In addition, the results are consistent with conclusions from recent studies that 

depreciation rates for business R&D are likely to be more variable due to different 

competition environments across industries and higher than traditional 15 percent 

assumption (Berstein and Mamuneas 2006, Corrado et al 2006, Hall 2007, Huang and 

Diewert 2007 and Warusawitharana 2008). Lastly, for the purpose of implementation, 

this paper recommends a preliminary set of R&D depreciation rates for the ten R&D 

intensive industries identified in BEA’s R&D Satellite Account.  
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